Optimal Control of Two-level Quantum System with Energy Cost Functional

P.K.Das

Physics and Applied Mathematics Unit 203,B.T.Road,Kolkata-700108 Indian Statistical Institute

e-mail:daspk@isical.ac.in

1 Objectives of the work

- The steering problem for multi-level quantum system discussed. minimizing energy cost functional of the control will be
- The system is subjected to an external field with the minimum energy function.
- The problem will be illustrated in terms of the quantum spin up and spin down states of the Pauli two-level system.

Multi-level Quantum Control System

state equation We consider a forced (controlled) system represented by the

$$i\hbarrac{d}{dt}|\psi(t)
angle=H_A|\psi(t)
angle+i\hbar B|u(t)
angle$$

to be matrices of dimensions $n \times n$ and $n \times m$ respectively. where the system Hamiltonian operators H_A and B are taken

Applying the classical variational principle the state vector of the quantum dynamical system (1) can be represented in the

$$|\psi(t)\rangle = U(t - t_0)|\psi(t_0)\rangle + \int_{t_0}^t U(t - \tau)B|u(\tau)\rangle d\tau$$
 (2)

where U is the unitary matrix operator corresponding to the Hamiltonian H_A .

unitary operator U(t) assumes the representation matrix operator H_A are distinct. Then the adjoint of the We assume that the eigenvalues $a_1, a_2, \dots a_n$ of the system

$$U^{+}(t) = \sum_{r=1}^{n} e^{\frac{i}{\hbar}a_{r}t} P_{r} = \sum_{r=1}^{n} g_{r}(t) P_{r}$$

with $g_r(t) = e^{\frac{i}{\hbar}a_r t}, n = 1, 2, \dots n$.

Then the system state is given by taking $t_0 = 0$ with initial state $|\psi(0)\rangle$,

$$|\psi(t)\rangle = U(t)\{|\psi(0)\rangle + \int_0^t \sum_{r=1}^n g_r(\tau) P_r B |u(\tau)\rangle d\tau\}$$

$$= U(t)\{|\psi(0)\rangle + S_0 |W(t)\rangle\}$$
(

where

$$S_0 = [P_1 B, P_2 B, \dots, P_n B]$$
 (5)

and

$$|W(t)
angle = \left[egin{array}{c} |w_1(t)
angle \ |w_2(t)
angle \ dots \ dots \ |w_n(t)
angle \end{array}
ight]$$

6

with
$$|w_r(t)\rangle = \int_0^t g_r(\tau)|u(\tau)\rangle d\tau$$
.

system (1). quantum controllability operator of the quantum control **Definition.** The operator S_0 formulated in (5)is defined to be

Formulation of the Optimal Control Problem

section-1 in the Hilbert space $\mathcal{H} = \mathcal{L}^2(\mathbb{C}^n)$ by the time evolution state vector as We have a quantum mechanical control system described in

$$i\hbar \frac{d}{dt}|\psi(t)\rangle = H_A|\psi(t)\rangle + i\hbar B|u(t)\rangle$$
 (7)

.

The optimal control problem is to find the controller state $|\psi(T)\rangle$ in \mathbb{C}^n . $|u(t)\rangle \in \mathcal{L}^2(\mathbb{C}^m)$ which steers the initial state $|\psi(0)\rangle$ to the final

functional over the time interval $0 \le t \le T$ prescribed by The controller $|u(t)\rangle \in \mathcal{L}^2(\mathbb{C}^m)$ minimizes the energy cost

$$J(u) = \int_0^T \langle u^+(t)|Q|u(t)\rangle dt$$

 ∞

respective Hilbert space of the controller $|u(t)\rangle$. where Q is a positive definite self-adjoint operator in the

- functional may be taken to be unity operator IWithout loss of generality the operator Q in (8) of the cost
- exists a nonsingular operator P such that $Q = P^+P$. Because, for a positive definite self-adjoint operator Q there

- Now put $|v(t)\rangle = P|u(t)\rangle$.
- Then (8) becomes

$$J = \int_0^T \langle v^+(t)|v(t)\rangle dt = \||v\rangle\|^2 \tag{9}$$

the norm square of the vector $|v(t)\rangle$.

- And in this case, we have to replace $|u(t)\rangle$ by $|v(t)\rangle$ and B by BP^{-1} in (1).
- Hence, in general, we can take the cost functional (8) to be the norm functional as

$$J(u) = |||u(t)\rangle||^2.$$
 (10)

control problem Outline of solution of the optimal

- control system analogous way of a classical finite dimensional multi-variable The quantum mechanical system has been formulated in an
- The optimal control of the multi-level quantum system defined in (10) is formulated in the Hilbert space $\mathcal{L}^2(\mathbb{C}^m)$ as the minimization problem of a norm functional of the space.
- In this section we shall see that optimal control of the quantum the control vector. manifold of the Hilbert space $\mathcal{L}^2(\mathbb{C}^m)$, the admissible space of mechanical system exists uniquely in a finite dimensional linear

- Let $M^2[0,T]$ be the linear manifold generated by the H_A of the dynamical system in the Hilbert space $\mathcal{L}^2(\mathbb{C}^n)$. eigenfunctions $\{g_r(t), r = 1, 2, \dots n\}$ of the Hermitian operator
- us construct an orthonormal functions $\{\theta_i(t), i = 1, 2 \dots n\}$ as $M^{2}[0,T]$. Using Gram-Schmidt orthogonalization process, let We now construct an orthonormal basis of the linear manifold

$$\beta_{r} = g_{1}$$

$$\beta_{r} = g_{r} - \sum_{s=1}^{r-1} \langle g_{r}, \theta_{s} \rangle \theta_{s}$$
(11)

where
$$\theta_1 = \frac{\beta_1}{\|\beta_1\|}$$
 and $\theta_r = \frac{\beta_r}{\|\beta_r\|}$.

We elaborate the above in a few more steps:

$$\beta_{1} = g_{1}$$

$$\beta_{2} = g_{2} - \langle g_{2}, \theta_{1} \rangle \theta_{1}$$

$$\beta_{3} = g_{3} - \langle g_{3}, \theta_{1} \rangle \theta_{1} - \langle g_{3}, \theta_{2} \rangle \theta_{2}$$

$$\beta_{4} = g_{4} - \langle g_{4}, \theta_{1} \rangle \theta_{1} - \langle g_{4}, \theta_{2} \rangle \theta_{2} - \langle g_{4}, \theta_{3} \rangle \theta_{3}$$

$$\dots$$

$$\beta_{n} = g_{n} - \langle g_{n}, \theta_{1} \rangle \theta_{1} - \langle g_{n}, \theta_{2} \rangle \theta_{2} - \langle g_{n}, \theta_{3} \rangle \theta_{3} - \langle g_{n}, \theta_{3} \rangle \theta_{3}$$

 $\beta_n = g_n - \langle g_n, \theta_1 \rangle \theta_1 - \langle g_n, \theta_2 \rangle \theta_1$ $\dots \langle g_n, \theta_{n-1} \rangle \theta_{n-1}$

with
$$\theta_1 = \frac{\beta_1}{\|\beta_1\|}$$
, $\theta_2 = \frac{\beta_2}{\|\beta_2\|}$, $\theta_3 = \frac{\beta_3}{\|\beta_3\|}$ and so on $\theta_n = \frac{\beta_n}{\|\beta_n\|}$.

We now write the eigenfunctions $g_r(t)$ as

$$g_{1} = \langle g_{1}, \theta_{1} \rangle \theta_{1}$$

$$g_{2} = \langle g_{2}, \theta_{1} \rangle \theta_{1} + \langle g_{2}, \theta_{2} \rangle \theta_{2}$$

$$g_{3} = \langle g_{3}, \theta_{1} \rangle \theta_{1} + \langle g_{3}, \theta_{2} \rangle \theta_{2} + \langle g_{3}, \theta_{3} \rangle \theta_{3}$$

$$g_{4} = \langle g_{4}, \theta_{1} \rangle \theta_{1} + \langle g_{4}, \theta_{2} \rangle \theta_{2} + \langle g_{4}, \theta_{3} \rangle \theta_{3} + \langle g_{4}, \theta_{4} \rangle \theta_{4}$$

$$\dots$$

$$g_{n} = \langle g_{n}, \theta_{1} \rangle \theta_{1} + \langle g_{n}, \theta_{2} \rangle \theta_{2} + \langle g_{n}, \theta_{3} \rangle \theta_{3} + \langle g_{4}, \theta_{4} \rangle \theta_{4}$$

$$+ \langle g_{n}, \theta_{4} \rangle \theta_{4} + \dots + \langle g_{n}, \theta_{n} \rangle \theta_{n}$$

(12)

In a compact form we have

$$g_r(t) = \|\beta_r\|\theta_r(t) + \sum_{s=1}^r \langle g_r, \theta_s \rangle \theta_s(t) =$$

$$= \sum_{s=1}^r \langle g_r, \theta_s \rangle \theta_s(t), r = 1, 2, \dots n.$$

$$(13)$$

Using the representations of the functions $g_r(t)$, r = 1, 2, ..., n $\theta_r(t), r = 1, 2, \dots n$ as represented in terms of the orthonormal functions given in (13), the adjoint $U^+(t)$ operator defined in (3) can be

$$U^{+}(t) = \sum_{r=1} A_r \theta_r(t) \tag{1}$$

where

$$A_r = \langle g_r, \theta_r \rangle P_r + \langle g_{r+1}, \theta_r \rangle P_{r+1} + \dots + \langle g_n, \theta_r \rangle P_n$$
 (15)

• With elaboration we have

$$\sum_{r=1}^{n} g_r(t) P_r$$

$$= g_1(t) P_1 + g_2(t) P_2 + g_3(t) P_3 + g_4(t) P_4 + \dots + g_n(t) P_n$$

$$= \langle g_1, \theta_1 \rangle \theta_1 P_1$$

$$+ \langle g_2, \theta_1 \rangle \theta_1 P_2 + \langle g_2, \theta_2 \rangle \theta_2 P_2$$

$$+ \langle g_3, \theta_1 \rangle \theta_1 P_3 + \langle g_3, \theta_2 \rangle \theta_2 P_3 + \langle g_3, \theta_3 \rangle \theta_3 P_3$$

$$+ \langle g_4, \theta_1 \rangle \theta_1 P_4 + \langle g_4, \theta_2 \rangle \theta_2 P_4 + \langle g_4, \theta_3 \rangle \theta_3 P_4$$

$$+ \langle g_4, \theta_4 \rangle \theta_4 P_4$$

•

$$+\langle g_n, \theta_1 \rangle \theta_1 P_n + \langle g_n, \theta_2 \rangle \theta_2 P_n + \langle g_n, \theta_3 \rangle \theta_3 P_n + \dots \langle g_n, \theta_n \rangle \theta_n P_n = A_1 \theta_1(t) + A_2 \theta_2(t) + A_3 \theta_3(t) + A_4 \theta_4(t) + \dots + A_n \theta_n(t)$$

(16)

where

$$A_{1} = \langle g_{1}, \theta_{1} \rangle P_{1} + \langle g_{2}, \theta_{1} \rangle P_{2} + \langle g_{3}, \theta_{1} \rangle P_{3}$$

$$+ \langle g_{4}, \theta_{1} \rangle P_{4} + \ldots + \langle g_{n}, \theta_{1} \rangle P_{n}$$

$$A_{2} = \langle g_{2}, \theta_{2} \rangle P_{2} + \langle g_{3}, \theta_{2} \rangle P_{3} + \langle g_{4}, \theta_{2} \rangle P_{4}$$

$$+ \ldots + \langle g_{n}, \theta_{2} \rangle P_{n}$$

and so on.
Now,

$$|w_{1}(t)\rangle = \int_{0}^{t} g_{1}(\tau)|u(\tau)\rangle d\tau$$

$$= \int_{0}^{t} \langle g_{1}, \theta_{1}\rangle \theta_{1}(\tau)|u(\tau)\rangle d\tau$$

$$= \langle g_{1}, \theta_{1}\rangle \int_{0}^{t} \theta_{1}(\tau)|u(\tau)\rangle d\tau$$

$$= \langle g_{1}, \theta_{1}\rangle I_{m}|v_{1}(t)\rangle$$

with $|v_1(t)\rangle = \int_0^t \theta_1(\tau) |u(\tau)\rangle d\tau$ where $|u(\tau)\rangle$ is a $m \times 1$ column vector.

• Again,

$$|w_{2}(t)\rangle = \int_{0}^{t} g_{2}(\tau)|u(\tau)\rangle d\tau$$

$$= \int_{0}^{t} \{\langle g_{2}, \theta_{1}\rangle \theta_{1} + \langle g_{2}, \theta_{2}\rangle \theta_{2}\}|u(\tau)\rangle d\tau$$

$$= \langle g_{2}, \theta_{1}\rangle \int_{0}^{t} \theta_{1}(\tau)|u(\tau)\rangle d\tau$$

$$+ \langle g_{2}, \theta_{2}\rangle \int_{0}^{t} \theta_{2}(\tau)|u(\tau)\rangle d\tau$$

$$= \langle g_{2}, \theta_{1}\rangle I_{m}|v_{1}(t)\rangle + \langle g_{2}, \theta_{2}\rangle I_{m}|v_{2}(t)\rangle$$

• Similarly,

$$|w_3(t)\rangle = \langle g_3, \theta_1 \rangle I_m |v_1(t)\rangle + \langle g_3, \theta_2 \rangle I_m |v_2(t)\rangle + \langle g_3, \theta_3 \rangle I_m |v_3(t)\rangle$$

and

$$= \langle g_4, \theta_1 \rangle I_m | v_1(t) \rangle + \langle g_4, \theta_2 \rangle I_m | v_2(t) \rangle$$

+\langle g_4, \theta_3 \rangle I_m | v_3(t) \rangle + \langle g_4, \theta_4 \rangle I_m | v_4(t) \rangle

and

$$|w_n(t)\rangle$$

$$= \langle g_n, \theta_1 \rangle I_m |v_1(t)\rangle + \langle g_n, \theta_2 \rangle I_m |v_2(t)\rangle$$

$$+ \langle g_n, \theta_3 \rangle I_m |v_3(t)\rangle + \ldots + \langle g_n, \theta_n \rangle I_m |v_n(t)\rangle.$$

Then the vector function $|W(t)\rangle$ in (6) is transformed into

$$|W(t)\rangle = \triangle |V(t)\rangle \tag{18}$$

where

$$|V(t)\rangle = \begin{vmatrix} |v_1(t)\rangle| \\ |v_2(t)\rangle| \\ \vdots \\ |v_n(t)\rangle \end{vmatrix}$$

(19)

with
$$|v_r(t)\rangle = \int_0^t \theta_r(\tau) |u(\tau)\rangle d\tau$$

and \triangle is a non-singular lower triangular matrix

	_			_
$\langle \langle g_n, \theta_1 \rangle I_m \rangle$		$\langle g_3, heta_1 angle I_m$	$\langle g_2, heta_1 angle I_m$	$\langle g_1, \theta_1 \rangle I_m$
$\langle g_n, heta_2 angle I_m$	•••	$\langle g_2, heta_2 angle I_m$	$\langle g_2, heta_2 angle I_m$	0
$\langle g_n, heta_3 angle I_m$	•••	$\langle g_3, heta_3 angle I_m$	0	0
•	• • •	•	•	•
$\langle g_n, heta_n angle I_m$	•••	0	0	0

such that

$$\triangle \triangle^{+} = D = [D_{rs}] \tag{20}$$

with D_{rs} are the scalar matrices of order M given by

$$D_{rs} = diag\{\langle g_r, g_s \rangle, \dots, \langle g_r, g_s \rangle\}$$

Then using (12) the state vector function $|\psi(t)\rangle$ described by (4) of the dynaminal system (7) may also be represented as

$$|\psi(t)\rangle = U(t)\{|\psi(0)\rangle + S|V(t)\rangle\},\tag{21}$$

where

$$S = [A_1 B, A_2 B, \dots A_n B] \tag{22}$$

with A_r 's defined in (15) and

$$|V(t)\rangle = \begin{bmatrix} |v_1(t)\rangle \\ |v_2(t)\rangle \\ \vdots \\ |v_n(t)\rangle \end{bmatrix}, |v_r(t)\rangle = \int_0^t \theta_r(\tau)|u(\tau)\rangle d\tau \qquad (23)$$

Putting the values of A_r 's in (22) from (15) we get the algebraic relation

$$S = S_0 \triangle \tag{24}$$

where S_0 is defined by (5).

 \triangle is a nonsingular lower triangular matrix given by

$$\triangle = \begin{bmatrix} \triangle_{11} & 0 & 0 & \dots & 0 \\ \triangle_{21} & \triangle_{22} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ \triangle_{n1} & \triangle_{n2} & \triangle_{n3} & \dots & \triangle_{nn} \end{bmatrix}$$
 (25)

 \triangle_{ir} 's are the scalar matrices of order m expressed as

$$\triangle_{ir} = diag\{\langle g_i, \theta_r \rangle, \langle g_i, \theta_r \rangle, \dots \langle g_i, \theta_r \rangle, i \ge r$$
 (26)

and $\triangle_{ir} = 0$, the null matrix of order m, for i < r.

The basic problem of the dynamical system (7) is to steer the [0,T] where the norm of the controller $|u(t)\rangle$ over the time initial state $|\psi(0)\rangle$ to the final state $|\psi(T)\rangle$ over time interval interval is minimized.

Putting t = T in (20) the state function is represented as

$$|\psi(T)\rangle = U(T)\{|\psi(0)\rangle + S|V(T)\rangle\},$$
 (27)

and hence we obtain the algebraic system

$$S|V\rangle = |Y\rangle \tag{28}$$

with

$$|Y\rangle = U^{+}(T)|\psi(T)\rangle - |\psi(0)\rangle \tag{29}$$

formulated in section-3 of [3]. system of solving (27) with minimum norm ||V|| for which The solution of the algebraic problem for classical control $\min ||V|| = \min ||u||$, the norm of the controller has been

We now enunciate the main result in the following theorem:

norm and the optimal solution is given by state $|\psi(T)\rangle$ in the space \mathbb{C}^n , if the rank of the controllability of the algebraic system given by equation (27) with minimum operator S is n, then there exists a unique optimal vector $|V\rangle$ **Theorem - 1** Given the initial state $|\psi(0)\rangle$ and the target

$$|\hat{V}\rangle = S^+(SS^+)^{-1}|Y\rangle. \tag{30}$$

form [3] given by The optimal control $|\hat{u}(t)\rangle$ of the dynamical system (7) minimizing the energy cost functional (10) is expressed in the

$$|\hat{u}(t)\rangle = \sum_{r=1}^{n} \theta_r(t) |\hat{v}_r(T)\rangle \tag{31}$$

where the vectors $|\hat{v}_r(T)\rangle \in \mathbb{C}^m$ are given in (22) with

$$|\hat{V}(t)\rangle = \begin{bmatrix} |v_1(t)\rangle \\ |v_2(t)\rangle \\ \vdots \\ |v_n(t)\rangle \end{bmatrix}$$
(32)

control Synthesis of the minimum energy

- So far we have expressed the optimal control of the controllable Hilbert space. orthonormal functions in a finite dimensional subspace of the system having minimum energy in terms of a sequence of
- So there lies a difficulty in solving practical problems
- The present section is concerned with the synthesis of the optimal control of the dynamical system in some explicit useful

Lemma-1

section 3 by equation (24). The product $\triangle \triangle^+$ is a nonsingular matrix which is expressed in the form Let the \triangle represents the lower triangular matrix defined in

$$\triangle \triangle^{+} = D = \begin{bmatrix} D_{11} & D_{12} & \dots & D_{1n} \\ D_{21} & D_{22} & \dots & D_{2n} \\ & \dots & & & & \\ D_{n1} & D_{n2} & \dots & D_{nn} \end{bmatrix}$$

where D_{ij} 's are scalar submatrices of order m given by

$$D_{rs} = diag\{\langle g_r, g_s \rangle, \dots, \langle g_r, g_s \rangle\}.$$

Theorem -2.

system from the initial state $|\psi(0)\rangle$ to the target state $|\psi(T)\rangle$ system (7) is n, then the optimal control $|\hat{u}(t)\rangle$ minimizing the can be formulated as energy cost functional (10) which transfer the state of the If the rank of controllability matrix S_0 defined by (5) of the

$$|\hat{u}(t)\rangle = K(t)|Y\rangle, |Y\rangle = U^{-1}(T)|\psi(T)\rangle - |\psi(0)\rangle, 0 \le t \le T$$
(33)

matrix function of $t(0 \le t \le T)$ written as where $U^+(T)$ is given by (3) for t = T and K(t) is an $m \times n$

$$K(t) = F(t)S_0^+(S_0DS_0^+)^{-1}. (34)$$

•
$$F(t) = [I_m(g_1), I_m(g_2), \dots, I_m(g_n)],$$

• and $I_m(g_r)$ is a scalar matrix as

$$I_m(g_r) = \left[egin{array}{cccc} g_r(t) & 0 & \dots & 0 \\ 0 & g_r(t) & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & g_r(t) \end{array}
ight]$$

Electron spin:Quantum two-state system

formed by the eigenstates of the spin operator The spin state of an electron is represented on \mathbb{C}^2 in the basis

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{35}$$

The control system is defined by

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = S_x |\psi(t)\rangle + i\hbar\alpha |u(t)\rangle$$
 (36)

• The eigenvalues of S_x are $\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$.

The eigenvectors are given by $|\uparrow\rangle = \frac{1}{\sqrt{2}}$ and

$$|\downarrow
angle = rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \ -1 \end{array}
ight).$$

The projection operators, for $a_1 = \frac{\hbar}{2}$ and $a_2 = \frac{\hbar}{2}$, are

$$P_{|\uparrow\rangle}=rac{1}{2}\left(egin{array}{ccc} 1 & 1 \ 1 & 1 \end{array}
ight) ext{ and } P_{|\downarrow
angle}=rac{1}{2}\left(egin{array}{ccc} 1 & -1 \ -1 & 1 \end{array}
ight) ext{respectively}.$$

The adjoint of unitary operator U(t) is

$$U^{+}(t) = e^{\frac{i}{\hbar}S_{x}t} = e^{ia_{1}t}P_{|\uparrow\rangle} + e^{ia_{2}t}P_{|\downarrow\rangle}.$$

The optical control of the system can then be synthesized using the explicit formula

$$|\hat{u}(t)\rangle = K(t)|Y\rangle$$
 (37)

• with

$$K(t) = F(t)S_0^+(S_0DS_0^+)^{-1}$$
(38)

ullet and

$$|Y\rangle = U^{-1}(T)|\psi(T)\rangle - |\psi(0)\rangle$$
 (39)

Now

$$S_0 = [P_1 B, P_2 B] = \alpha [P_1, P_2] \tag{40}$$

Then

$$S_0^+ = \alpha \begin{vmatrix} P_1 \\ P_2 \end{vmatrix} \tag{41}$$

Also

$$F(t) = [g_1(t)I, g_2(t)I]$$
(42)

Hence we have

$$F(t)S_0^+$$
= $[g_1(t)I, g_2(t)I]\alpha \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$ = $\alpha[g_1(t)IP_1 + g_2(t)IP_2]$
= $\alpha[g_1(t)IP_1 + g_2(t)IP_2]$
(43)

• Again

$$D = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \tag{44}$$

where

$$D_{11} = \begin{bmatrix} \langle g_1 g_1 \rangle & 0 \\ 0 & \langle g_1 g_1 \rangle \end{bmatrix} = \langle g_1(t) g_1(t) \rangle I \qquad (45)$$

and similarly $D_{12} = \langle g_1(t)g_2(t)\rangle I$, $D_{21} = \langle g_2(t)g_1(t)\rangle I$, $D_{22} = \langle g_2(t)g_2(t)\rangle I.$

We then at once obtain

$$S_0 D S_0^+ = \alpha^2 (T P_1 + T P_2) = \alpha^2 T (P_1 + P_2) = \alpha^2 T.$$
 (46)

Now

$$K(t) = F(t)S_0^+(S_0DS_0^+)^{-1}$$

$$= \alpha[g_1(t)P_1 + g_2(t)P_2]\frac{1}{\alpha^2T}$$

$$= \frac{1}{\alpha T}[g_1(t)P_1 + g_2(t)P_2]$$

$$(4')$$

In special case, let us try to find
$$|\hat{u}(t)\rangle$$
 for which the system is transferred from $|\psi(0)\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to the state $|\psi(T)\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

 $\left(e^{\frac{iT}{2}}P_1 + e^{-\frac{iT}{2}}P_1\right)$ $\frac{e^{\frac{iT}{2}}}{2}$ $2^{e_{\frac{iT}{2}}}$ (48)

Thus the optimal control of the two-level Pauli spin system

minimizing the system is given by
$$|\hat{u}(t)\rangle = \frac{1}{\alpha T} [g_1(t)P_1 + g_2(t)P_2]|Y\rangle$$

$$= \frac{1}{\alpha T} \begin{pmatrix} \frac{it}{2} & 1 & 1 \\ \frac{e^{\frac{it}{2}}}{2} & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{e^{\frac{-it}{2}}}{2} & 1 & 1 \\ \frac{e^{\frac{it}{2}}}{2} & 1 & 1 \end{pmatrix} + \frac{e^{\frac{-it}{2}}}{2} & -1 & 1 \\ \frac{e^{\frac{it}{2}}}{2}}{2} & 1 & 1 & -1 \\ \frac{e^{\frac{it}{2}}}{2}}{2} & 1 & 1 & -1 \\ 1 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & 1 &$$

Reference

- 866-876, (2001). quantum systems, IEEE Trans. Automat. Control, vol. 46, no. 6, [1].Alessandro, D. and Dahleh, M. Optimal control of two-level
- of time-independent targets, Phys. Rev. A, vol. 71, 053810-9(2005). [2]. Serban, I., Werschnik, J. and Grass, E. K. U., Optimal control
- linear multivariable systems with integral quadratic energy [3].Roy, B. C. and Choudhury, A. K., Optimal control of a class of constraint, Int. J. Contr, vol. 17, no. 1, 117-126, (1973).
- Pearson Education, (2005). [4].Griffiths, D. J., Introduction to quantum mechanics, 2nd ed.,
- feedback control system in interacting Fock space, Int. J. Contr., vol.79, (2006).[5]. Das, P. K. and Roy, B. C., State space modelling of quantum
- [6]. Sage, A. P., Optimum systems control, Prentice-Hall Inc.,

Englewood cliffs, N. J. 1968.

Prentice-Hall, New Jersey, Englewood Cliffs, 1967. [7]. Ogata, K., State space analysis of control systems,

theory, John Wiley and sons, Ince N. Y., 1968.q [8]. Lee, E. B. and Markus, L., Foundation of optimal control

[9]. Sontag, E. D., Mathematical Control theory, Springer, 1990.

Ltd., 2001 [10]. Isham, C. J. Lectures on quantum theory, Allied Publishers

quantum information, Cambridge University Press, 2002 [11]. Nielsen, M. A., and Chuang, I. L. Quantum computation and

