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1 Objectives of the work

e The steering problem for multi-level quantum system
minimizing energy cost functional of the control will be

discussed.

e The system is subjected to an external field with the minimum

energy function.

e The problem will be illustrated in terms of the quantum spin
up and spin down states of the Pauli two-level system.




2  Multi-level Quantum Control System

e We consider a forced (controlled) system represented by the
state equation

ih (1)) = Halu(0)) + ihBlu(t) ()

where the system Hamiltonian operators H4 and B are taken
to be matrices of dimensions n X n and n X m respectively.

Applying the classical variational principle the state vector of
the quantum dynamical system (1) can be represented in the

form as
[

(1)) = U(t — to)ld(te)) + \ U(t—7)Blu(r)dr  (2)

to

where U is the unitary matrix operator corresponding to the
Hamiltonian H 4.




e We assume that the eigenvalues aq, a9, ...a, of the system
matrix operator H,4 are distinct. Then the adjoint of the

unitary operator U (t) assumes the representation

Ut (t) = M:Umw.glﬁﬁ = M:Um?@vﬁ,
r=1

r=1

with g, (t) = en®t n=1,2,...n.

e Then the system state is given by taking {5 = 0 with initial
state [4(0)),

[4(t))




W(t) =

with |w,(t)) H\o gr(7)|u(7))dr.

e Definition. The operator Sy formulated in (5)is defined to be
quantum controllability operator of the quantum control

system (1).




3 Formulation of the Optimal Control
Problem

e We have a quantum mechanical control system described in
section-1 in the Hilbert space H = L*(@™) by the time

evolution state vector as

ih (1)) = Halu(0)) + ihBlu(t)

e The optimal control problem is to find the controller
lu(t)) € L2(@™) which steers the initial state |¢(0)) to the final
state [¢(T)) in @™.




e The controller |u(t)) € £L2(@™) minimizes the energy cost

functional over the time interval 0 <t < T prescribed by

J(u) = \ <t (1) Qlult)) de

where () is a positive definite self-adjoint operator in the
respective Hilbert space of the controller |u(t)).

e Without loss of generality the operator ) in (8) of the cost
functional may be taken to be unity operator I.

e Because, for a positive definite self-adjoint operator () there
exists a nonsingular operator P such that Q = PTP.




Now put |v(t)) = Plu(t)).
Then (8) becomes

gn\o (T (@®)v())dt = |||v)]|* (9)

the norm square of the vector |v(t)).

And in this case, we have to replace |u(t)) by |v(t)) and B by
BP~1in (1).

Hence, in general, we can take the cost functional (8) to be the

norm functional as

(10)




4 Outline of solution of the optimal

control problem

e The quantum mechanical system has been formulated in an
analogous way of a classical finite dimensional multi-variable

control system.

The optimal control of the multi-level quantum system defined
in (10) is formulated in the Hilbert space £2(@™) as the

minimization problem of a norm functional of the space.

In this section we shall see that optimal control of the quantum
mechanical system exists uniquely in a finite dimensional linear
manifold of the Hilbert space £2(@™), the admissible space of

the control vector.




e Let M?2[0,T] be the linear manifold generated by the
eigenfunctions {g,(t),r = 1,2,...n} of the Hermitian operator

H 4 of the dynamical system in the Hilbert space £?(@").

e We now construct an orthonormal basis of the linear manifold
M?[0,T)]. Using Gram-Schmidt orthogonalization process, let
us construct an orthonormal functions {60;(¢),i = 1,2...n} as

A
(11)
By

where 6; = __mw__ and 0, = __mw__.




e We elaborate the above in a few more steps:

b1 g1

2 g2 — (g2, 01)01

B3 g3 — (g3, 01)01 — (g3, 02)02

Ba g4 — (94,61)61 — (g4, 02)02 — (g4, 03)05

gn — Abzg%Hv%H - A.Qﬁi%wv%w - A.Qﬁi%wv%w|
SR A.Qﬁi mile%SlH

0 B2 0s = Ba and so on 6,, = B

18117 72 ~ TGl 183l —IBall




We now write the eigenfunctions g, (t) as

g1, 0
01 + (g2, 02)02

01 + (g3, 02)02 + (g3, 03)03

01 + (g4, 02)02 + (g4,03)03 + (g4, 04)04

A
(92
(g3
A

v
01)
01)
ga,01)

(gn,01)01 + (gn,02)02 + (gn, 03)03+
|_|A.Q3v %%v%# + ...+ A.Qﬁi %3v%3




e In a compact form we have

gr (1) 1801107 (£) + 32—y {gr, 05)05(t) =

(13)
S {gr,05)05(), r=1,2,...n.

e Using the representations of the functions g¢,.(t), r =1,2,...n
given in (13), the adjoint U™ (¢) operator defined in (3) can be
represented in terms of the orthonormal functions
0.(t),r=1,2,...n as

U0 = 30 A0, (14

where

Ar =(9r, 0r) Pr +(Gry1,00) Pry1 + ..+ (Gn, 0r) Py (15)




e With elaboration we have

D> 1 Gr(t) Pr

g ()P + g2()Pa 4+ g3()Ps + ga() Py + . .. + gn(t) Py,

(g1,01)01 P1

+(g2,01)01 P2 + (g2,02)02 P>

g3,01)01P5 + (g3,02)02P5 + (g3, 03)03 Ps
01)01 P4 + (ga, 02)02 Py + (ga,03)03 Py
0,)0,P,

+
+(94
+

|_|A,Q§ %vapwz T A,Q:v %wv%wﬁz T A,Q:g %wv%ww
+ ... {Gn,0n)0, Py
A101(t) + A05(t) + AzO3(t) + Ag04(2t) +



(91,01)P1 + (g2,01) P> + (g3,01) P3
+{g4,01)Ps + ...+ {gn, 0, P,

A (g2,02) P2 + (g3, 02) P35 + (g4, 02) Py
+ ...+ (gn,02) P,

and so on.

e Now,

\o g1.()u(r))dr
\o (91,6200, (1) u(r))dr

(g1, 01) \ 0, (r)|u(r))dr
(91,01)Im|v1(2))




o with |vi(t)) = \o 01(7)|u(7))dr where |u(7)) is a m x 1 column

vector.

e Again,

ws (1)) \ ga()|u(r))dr

\o [{g2, 0001 + (g2, 02)05 }u(r))dr
(g2, 01) \ 0, (1) u(r))dr

._.ASQQMV\O 02(7)|u(T))dr
(92, 01)Im|v1(2)) + (g2, 02) Im|va(t))




e Similarly,

[ws (1)) (93, 01)Im|v1(t)) + (g3, 02) Im|va(t))
+(g3,03)Im|v3(t))

[wa(t))
(94, 01) Lm|v1(t)) + (ga, 02) Im|v2(t))
+(g4,03) L |v3(t)) + (ga, 04) Im|va(t))

[ wn (1))
A.Qﬁ:%pvh:_@u@vv T A.Q:v %vaS_@w@vv
|_|A.Q:v %vaS_@w@vv Tt A.sz %:vNS_@:QVV.




e Then the vector function |W (%)) in (6) is transformed into

(W(t)) = AV(2)) (18)




and A is a non-singular lower triangular matrix

\ (91,601)Im 0 0
A.Qwv%HvNS A.QMQ%MV.NS 0
(93,01) 1, (92,02)1,  (93,03)Im

/AQ:Q%HVNS (Gn, 02)I;m  (gn,03)Inm

e such that
ANT =D = D)

with D, are the scalar matrices of order M given by

bﬁm — &&D.QA“HA.QQ»TQ%V“ sy A.Qj.@wv”v




e Then using (12) the state vector function | (%)) described by
(4) of the dynaminal system (7) may also be represented as

[¥(2)) = U@){|4(0)) + SIV(E)}, (21)

e where

S =[A,B, AsB, ... A, B]

with A,’s defined in (15) and




e Putting the values of A,’s in (22) from (15) we get the
algebraic relation

S =S
where Sy is defined by (5).

e /\ is a nonsingular lower triangular matrix given by




e /\;,’s are the scalar matrices of order m expressed as

D&ﬁ — &s@.@ﬁﬁ@f%ﬁv“ A.Q?%ﬁvv s A.Qs;%ﬁvv L= AMQV

and A;, = 0, the null matrix of order m, for ¢ < r.

e The basic problem of the dynamical system (7) is to steer the
initial state [1(0)) to the final state [¢(T")) over time interval

[0, T] where the norm of the controller |u(t)) over the time

interval 1s minimized.




Putting ¢ = T in (20) the state function is represented as
(1)) = U(T){[¢(0)) + SIV(T))}, (27)

and hence we obtain the algebraic system

S|V) =1Y)

V) = U (T)[%(T)) — |+(0))

The solution of the algebraic problem for classical control
system of solving (27) with minimum norm ||V|| for which
min ||V'|| = min ||ul|, the norm of the controller has been
formulated in section-3 of [3].




e We now enunciate the main result in the following theorem:

Theorem - 1 Given the initial state |¢(0)) and the target

state [¢(T')) in the space @', if the rank of the controllability
operator S is n, then there exists a unique optimal vector :vv
of the algebraic system given by equation (27) with minimum

norm and the optimal solution is given by

V) = 8T (SSH) 1Y), (30)




e The optimal control |a(t)) of the dynamical system (7)
minimizing the energy cost functional(10) is expressed in the
form [3] given by

[a(t)) =) 6-(1)[0,(T)) (31)

e where the vectors |0,.(1T)) €™ are given in (22) with




5 Synthesis of the minimum energy

control

e So far we have expressed the optimal control of the controllable
system having minimum energy in terms of a sequence of
orthonormal functions in a finite dimensional subspace of the

Hilbert space.
e So there lies a difficulty in solving practical problems.

e The present section is concerned with the synthesis of the
optimal control of the dynamical system in some explicit useful

form.




e Lemma-1

Let the A represents the lower triangular matrix defined in

section 3 by equation (24). The product AA™T is a nonsingular

matrix which is expressed in the form

where D;;’s are scalar submatrices of order m given by

.Uﬂ.,w — &SQ\.QAA.Q\\J.Q%vv sty A.Qﬂ.u .Q,wvw




e Theorem -2.

If the rank of controllability matrix Sy defined by (5) of the
system (7) is n, then the optimal control |4 (¢)) minimizing the
energy cost functional (10) which transfer the state of the
system from the initial state [1/(0)) to the target state |¢(T))

can be formulated as

a(t)) = K()|Y), |Y) =U"{(DH(T)) —[4(0)), 0<t<T
(33)
where U™ (T) is given by (3) for t =T and K(t) is an m X n
matrix function of ¢(0 <t < T') written as

K(t) = F(t)Sg (SoDS)~ . (34)




o F(t) = [Im(91), Im(g2); - - -5 Im(gn)];

e and I,,(g,) is a scalar matrix as

Ln(gr)




6 Electron spin:Quantum two-state

system

e The spin state of an electron is represented on @2 in the basis

formed by the eigenstates of the spin operator
h({ 0 1

Sy = =
2\ 10

(35)

e The control system is defined by

ih () = S2[(0)) + ihafu(t)

e The eigenvalues of S, are w and Iw.




h
2

11 . 1 -1 .
Py = 3 - and Py = 3 o respectively.

and as = wv are

e The projection operators, for a; =

e The adjoint of unitary operator U (t) is

M

Ut (t) = er>" = e Py + €' P,




The optical control of the system can then be synthesized using

the explicit formula

a(t)) = K(@)]Y) (37)

K(t) = F(t)Sy (SoDSg) ™

V) = U (D)W(T)) - [%(0))

%‘o — ﬁwumvwwm_ = D;wfww_




e Hence we have




Dy = = (91(t)g1 ()1 (45)
(9191)

e and mwBZmH_u\ NUHM = A.QH va.Qwvava NUwH — A.Qwva.QH vang
D3z = (g2(¢)g2(¢))1.




e We then at once obtain

SoDS; = o*(TP, + TP,) = o°T (P, + P,) = o°T.

F(t)Sy (SoDSg )"

algi (t)Pr + g2(t) Pe] 527 (47)

—=[g91(¢)P1 + g2(t) Ps]

e In special case, let us try to find |u(¢)) for which the system is

1
transferred from |[¢(0)) = to the state |¢(T)) =







e Thus the optimal control of the two-level Pauli spin system

minimizing the system is given by
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